

Proposed Fermilab Contributions to Future Muon Accelerator R&D

Andreas Jansson Fermilab December 3, 2008

Outline

- Introduction
- Organization and Personnel Alan's talk
- Recent Accomplishments
- Proposal for FY2009-2012
 Budget Request

 This talk

Why Muon Collider R&D at Fermilab

- With the start-up of the LHC, the focus at Fermilab is currently shifting from energy frontier to intensity frontier (Project X).
- A Muon Collider is a possible future option for Fermilab (and the US) to get back to the energy frontier.
 - A multi-TeV Muon collider would fit the on the Fermilab site.
 - Production of muons would make use of the intensity frontier capability currently being proposed.
 - A first step towards a Muon Collider could be a Neutrino factory (which is also a further extension of the intensity frontier).
- Fermilab has unique capabilities to perform Muon Collider R&D
 - Experienced staff with right background and expertise
 - Special facilities (MuCool Test Area, Magnet factory/test facility, etc)

The Joint MC R&D Plan

Caveat

- The 5-year Muon R&D plan extends beyond the 3-year time frame which is the scope of this review.
 - Some tasks do not finish (or have milestones) in the FY09-11 period.
- The plan outlines the R&D that needs to be done, and the resources required to do it.
 - The execution of the R&D tasks will be coordinated between the collaborating labs/institutions
 - Fermilab's strategy is to focus on the critical items where we will have the most impact.
- This talk will give an overview of the proposed Fermilab share of the plan in the next three years.
 - Note that this is a collaborative effort, and Fermilab does not exclusively own the tasks mentioned.

Proposal for FY2009-2011

- Design and simulations
- Neutrino Factory IDS/RDR
- MICE
- Cooling Channel RF
- Magnets
- 6D cooling channel components and test
- Management and organization

Design & Simulations

- The 5-year plan includes a detailed plan, listing the simulation studies that need to be performed.
- The distribution of this work will be coordinated among the participating labs.
- Areas where Fermilab is, and will be, involved include
 - Proton driver (e.g. extensions to Project X)
 - Front-end (capture and bunch rotation)
 - Cooling channel (e.g. HCC and FOFO snake)
 - Muon acceleration (e.g. RF issues)
 - Collider ring design (e.g. IP optics)
- Fermilab's contribution is expected to grow from currently about 4FTE to 16FTE in 5 years (as Tevatron effort ramps down).

7.9FTE average effort FY09-11

Project X

- We would like to make sure the appropriate upgrade capability is built in from the start, by interfacing with design team.
 - Official design values have been adjusted based on MC input
 - 1MW at 8GeV, upgradable to 4-5MW at 8GeV
- Using Project X to feed a Muon Collider (or NF) would require one, or more likely two, new rings to repackage the beam before hitting the target.
 - Ring lattice
 - Re-bunching
 - Instabilities
 - Intensity effects

8 GeV LINAC

6d Cooling Channel Simulations

- Further HCC simulations, in collaboration with magnet and RF designers, to find engineering solution for including RF cavities.
- Investigation of FOFO snake which could possibly cool both types of muons simultaneously.
- Prepare for an end-to-end cooling channel simulation.

Collider Lattice Design

- Continue studies of collider lattice
 - e.g., chromatic
 correction and
 dynamic aperture

NF-RDR / IDS

- Front-end (capture, phase rotation and cooling)
 - Dave Neuffer is IDS coordinator for Front End.
 - Front end is highly synergistic with Muon Collider.
- Site specific (Fermilab) geological engineering studies
 - With DUSEL
- Muon acceleration
 - Some effort on FFAG (coordinated by S. Berg, BNL)
- Target
 - Small effort on simulations in support of target development
- Neutrino detector
 - Magnetization of very large volume [not part of this review]

2FTE average effort FY09-11

MICE

- MICE is an existing commitment
 - Aim is to demonstrate 4D cooling by 2012
- Fermilab's hardware contributions to MICE will be delivered by mid-2009
 - Mapping and testing of the Spectrometer Solenoids
 - Beamline profile monitors
 - Spectromenter (Fiber-tracker, cryoboxes, electronics, etc)
 - LiH absorber disks
- Remaining involvement mainly personnel and travel
 - Support exploitation/shiftwork
 - Some engineering support
 - Hire postdoc

Cooling Channel RF

- One of the most important objectives for Muon Collider R&D in the next three years is to demonstrate at least one RF technology that works (with beam) in a multi-Tesla magnetic field. Candidates include:
 - Cavities filled with high pressure gas
 - Vacuum cavities treated with cleaning techniques developed for superconducting cavities
 - Vacuum cavities treated with Atomic Layer Deposition (ALD)

 See Norem's talk (ANL)
 - Vacuum cavities shaped so that the high field surfaces are parallel to the magnetic field lines ("magnetic insulation")

 See Kirk's talk (BNL)
- Most of the development and all of the testing of these cavities will be done at Fermilab.

5.3FTE average effort FY09-11

First HPRF Beam Experiment

- We know high pressure gas can suppress breakdown in RF cavities.
 - What happens when an intense beam passes through the cavity?
- MTA beam line is currently being commissioned.
 - Linac proton beam can generate ionization levels similar to muon beam (6 10¹² protons equals ~1.2 10¹³ muons)
- Beam tests will be done in collaboration with Muons, Inc (SBIR).
 - First test will use the existing Muons, Inc test cell
 - Follow-up test will likely require building a "real" cavity

beam

Magnetic Insulation Test

- Measure the peak achievable gradient vs the direction of the magnetic field.
- Expect breakdown to be suppressed when E and B are (approximately) perpendicular
- If test successful, next step would be to build magnetically insulated cavity

Path to a 6D Cooling Channel

In the next couple of years, we plan a number of critical RF tests, each potentially leading up to a demonstrated 6D cooling channel

The majority of this work will be done at Fermilab!

Magnets

High Field Solenoids

- More than 30T (50T preferred) needed for the final cooling
- Paper studies of solenoid design
- Small HTS inserts
- HTS conductor development (BSCO) will be done in new national collaboration
- Helical Cooling Channel magnets
 - Build model magnets to test concepts
 - Paper studies on full magnet design, incorporating space for RF
- Magnet cost models
 - To aid first MC cost estimate (small effort)

4.5FTE average effort FY09-11

6D Cooling Channel Components and Test

- Once we have an RF technology that is proven to perform well in magnetic field (with beam), we would like to proceed with building a section and bench test it
- Fermilab would play a major role in building a section of either Helical Cooling Channel or Guggenheim ring.
- Both bench tests will likely be done at Fermilab (in MTA)
- The timescale for these tests in the 5-year plan is 2011-2013 (beyond the period currently being reviewed).
 - Preparations for such a test will be done in the next three years (mostly towards the end).
 - At the end of FY11, we should know what to build and have started the design work.

2.3FTE average effort FY09-11

Management

 Fermilab staff will have a significant involvement in managing and coordinating the overall Muon R&D program

1.7FTE average effort FY09-11

Manpower requirements

Overall 5-year plan:

	Now	Year 1	Year 2	Year 3	Year 4	Year 5
BNL	6.5	7	8	10	10	10
FNAL	20.8	23	28	30	33	33
LBNL	2.5	6	8	9	11	13
Other	7	13	35	32	32	32
TOTAL	35.6	49	79	81	86	88

Fermilab proposed contribution:

	FY08	FY09	FY10	FY11	FY12	FY13
1.1 Physics & Detector	0	0	0	0	0	0
1.2 Design, Simulations, Report	3.5	3.7	8	10	12	16
1.3 MC-DFS Costing	0	0	0	0	0	0
1.4 NF-RDR	0	2	2	2	1.5	0
2.1 MICE	5	4	4	4	2.5	1
2.2 RF R&D	8.3	7	5	4	3	3
2.3 Magnet Studies	3	4.5	4.5	4.5	4	3
2.4 6D Cooling Sections & Tests	0	0	3	4	7	7
2.5 Other R&D	0	0	0	0	0	0
3 Management	1	1.5	1.5	2	3	3
TOTAL	20.8	22.7	28	30.5	33	33

M&S Budget

- Detailed distribution of M&S funds will be coordinated among the participating labs/institutions.
 - Plan total is ~ \$88M, about 1/3 of which is M&S.
 - Expected Fermilab manpower contribution is about 40% of total, M&S budget share may be roughly same order.

Fermilab Summary

- A Neutrino Factory and/or Muon Collider is a possible future option for Fermilab.
 - A Muon Collider could put the US back on the energy frontier.
- There is a 5-year Muon Accelerator R&D plan on the table.
 - Aim is to demonstrate Muon Collider Feasibility by ~2013.
 - Requires significant increase in resources from OHEP.
- Fermilab proposes to play a major role in Muon Collider R&D over the next few years.
 - Involvement in IDS, MICE, RF R&D, Magnet Design and 6D cooling channel development, as well as management and scientific oversight.
- In the next three years, we expect crucial RF test results that will aid in down-selecting the 6D cooling channel options.
 - These tests will be done at Fermilab.

Road Map to the Future

- We believe ~2012 will be a pivotal time in HEP
 - LHC Physics results
 - Neutrino data from reactor and accelerator experiments
 - ➤ Double Chooz Daya Bay
 - > MINOS, T2K, Nova
 - Major Studies for Frontier Lepton-Colliders completed
 - ➤ ILC TDP (Technical Design Phase)
 - ➤ CLIC CDR (Conceptual Design Report)
- Many exciting results Will point us in some direction
 - We don't know which one yet
 - Need to prepare now to be ready then
 - ➤ Muon DFS (Design Feasibility Study)

December 3, 2008 – A. Jansson